skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pritchard, David A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Accurate classification of high‐dimensional data is important in many scientific applications. We propose a family of high‐dimensional classification methods based upon a comparison of the component‐wise distances of the feature vector of a sample to the within‐class population quantiles. These methods are motivated by the fact that quantile classifiers based on these component‐wise distances are the most powerful univariate classifiers for an optimal choice of the quantile level. A simple aggregation approach for constructing a multivariate classifier based upon these component‐wise distances to the within‐class quantiles is proposed. It is shown that this classifier is consistent with the asymptotically optimal classifier as the sample size increases. Our proposed classifiers result in simple piecewise‐linear decision rule boundaries that can be efficiently trained. Numerical results are shown to demonstrate competitive performance for the proposed classifiers on both simulated data and a benchmark email spam application. 
    more » « less